Properties

Label 21T124
Order \(1959552\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $124$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,10,21,7,17,6,14,2,12,19,9,18,5,13,3,11,20,8,16,4,15), (1,20,3,19)(2,21)(4,16,5,18)(6,17)(7,13)(8,15,9,14)(10,12,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
14:  $D_{7}$
896:  14T27

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $D_{7}$

Low degree siblings

42T2130 x 3, 42T2131 x 3, 42T2132 x 3, 42T2133, 42T2134 x 3, 42T2135, 42T2136, 42T2138 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 168 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1959552=2^{7} \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.