Properties

Label 21T123
Order \(1959552\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $123$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (5,6)(10,11,12)(13,14,15)(17,18)(19,21,20), (1,8,13,21,6,10,18,3,7,14,20,4,11,17)(2,9,15,19,5,12,16)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
7:  $C_7$
14:  $C_{14}$
56:  $C_2^3:C_7$ x 2
112:  14T9 x 2
448:  14T21
896:  $C_2 \wr C_7$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $C_7$

Low degree siblings

42T2103 x 6, 42T2104 x 6, 42T2105 x 6, 42T2106 x 6, 42T2107 x 6, 42T2108 x 6, 42T2109 x 6, 42T2110 x 6, 42T2111 x 3, 42T2112 x 6, 42T2113 x 3, 42T2114 x 6, 42T2115 x 6, 42T2116 x 6, 42T2117 x 6, 42T2118 x 6, 42T2119 x 6, 42T2120 x 6, 42T2121 x 6, 42T2122 x 2, 42T2123 x 6, 42T2124, 42T2125 x 2, 42T2126 x 3, 42T2127, 42T2128 x 3, 42T2129, 42T2137 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 333 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1959552=2^{7} \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.