Properties

Label 21T122
Order \(1959552\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $122$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18)(2,16)(3,17)(4,13,5,14,6,15)(7,12)(8,10)(9,11)(19,21,20), (1,21,3,20)(2,19)(4,17,5,16,6,18)(7,13,8,14,9,15)(11,12)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
14:  $D_{7}$
896:  14T27

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $D_{7}$

Low degree siblings

42T2096 x 3, 42T2097 x 3, 42T2098, 42T2099 x 3, 42T2100, 42T2101 x 3, 42T2102, 42T2139 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 171 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1959552=2^{7} \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.