Properties

Label 21T120
Order \(979776\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $120$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,8,10,15,17,21,2,4,9,12,14,16,19,3,5,7,11,13,18,20), (1,2,3)(5,6)(10,12)(14,15)(16,18,17)(20,21)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
7:  $C_7$
56:  $C_2^3:C_7$ x 2
448:  14T21

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $C_7$

Low degree siblings

42T1894 x 6, 42T1895 x 3, 42T1896 x 3, 42T1897 x 6, 42T1898 x 6, 42T1899 x 6, 42T1900 x 6, 42T1901 x 6, 42T1902 x 6, 42T1903 x 6, 42T1904 x 6, 42T1905 x 2, 42T1906, 42T1907 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 177 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $979776=2^{6} \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.