Properties

Label 21T119
Order \(734832\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $119$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,6,7)(2,17,5,9)(3,18,4,8)(11,12)(13,19)(14,21,15,20), (1,20,14,4,3,19,15,6,2,21,13,5)(7,12,9,10)(8,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
168:  $\GL(3,2)$
336:  14T17

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

21T119, 24T20695, 42T1834 x 2, 42T1835 x 2, 42T1836 x 2, 42T1847 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $734832=2^{4} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.