Properties

Label 21T118
Order \(734832\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $118$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,12,7,14,17,4,3,19,10,9,15,18,6)(2,21,11,8,13,16,5), (1,4,19)(2,6,21,3,5,20)(7,10,17,9,11,18)(8,12,16)(14,15)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
6:  $S_3$
168:  $\GL(3,2)$
336:  14T17
1008:  21T27
244944:  21T111

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

21T118 x 3, 42T1831 x 4, 42T1832 x 4, 42T1833 x 4, 42T1843 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 132 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $734832=2^{4} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.