Properties

Label 21T117
Order \(734832\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $117$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,2,3)(4,7,12,5,9,11,6,8,10)(13,21,16,15,19,17)(14,20,18), (1,18,15,9,20,4,10)(2,16,13,7,21,5,12)(3,17,14,8,19,6,11)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
3:  $C_3$
6:  $C_6$
21:  $C_7:C_3$
42:  $(C_7:C_3) \times C_2$
168:  $C_2^3:(C_7: C_3)$
336:  14T18

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $C_7:C_3$

Low degree siblings

24T20694, 42T1828, 42T1829, 42T1830, 42T1844

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $734832=2^{4} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.