Properties

Label 21T115
Order \(367416\)
n \(21\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $115$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,2)(4,21,13,5,20,14,6,19,15)(7,17,12,9,16,10,8,18,11), (1,17,5,13,21,8,12,3,16,6,14,20,7,10,2,18,4,15,19,9,11)
$|\Aut(F/K)|$:  $3$

Low degree resolvents

|G/N|Galois groups for stem field(s)
3:  $C_3$
168:  $\GL(3,2)$
504:  21T22
122472:  21T104

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $\GL(3,2)$

Low degree siblings

21T115 x 3, 42T1636 x 4, 42T1641 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 228 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $367416=2^{3} \cdot 3^{8} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.