Properties

Label 21T112
Order \(244944\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $112$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,19,16,6,13,11,7,2,20,18,4,14,12,9)(3,21,17,5,15,10,8), (1,21,18,5,13,10,7,2,19,16,6,15,12,8)(3,20,17,4,14,11,9)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
7:  $C_7$
14:  $C_{14}$
56:  $C_2^3:C_7$
112:  14T9

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: None

Degree 7: $C_7$

Low degree siblings

24T19235, 42T1505 x 3, 42T1506, 42T1507 x 3, 42T1508, 42T1509 x 3, 42T1510 x 3, 42T1511, 42T1512 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 72 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $244944=2^{4} \cdot 3^{7} \cdot 7$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.