Properties

Label 21T102
Order \(111132\)
n \(21\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $21$
Transitive number $t$ :  $102$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,3,2,4,7)(8,18,11,15,9,17)(10,16,12,21,13,20)(14,19), (1,21,12,2,19,13,5,20,9,7,16,11,6,18,10,3,17,14)(4,15,8)
$|\Aut(F/K)|$:  $1$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
3:  $C_3$
4:  $C_2^2$
6:  $S_3$, $C_6$ x 3
12:  $D_{6}$, $C_6\times C_2$
18:  $S_3\times C_3$
36:  $C_6\times S_3$
54:  $C_3^2 : C_6$
108:  18T41
162:  $C_3 \wr S_3 $
324:  18T119

Resolvents shown for degrees $\leq 47$

Subfields

Degree 3: $S_3$

Degree 7: None

Low degree siblings

42T1255, 42T1256, 42T1257

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 70 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $111132=2^{2} \cdot 3^{4} \cdot 7^{3}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.