Properties

Label 20T992
Order \(1966080\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $992$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,17,16,11,8,6)(2,18,15,12,7,5)(3,10,13,19)(4,9,14,20), (1,3,17,2,4,18)(7,11,13)(8,12,14)(15,16)(19,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
120:  $S_5$
240:  $S_5\times C_2$
1920:  $(C_2^4:A_5) : C_2$ x 3
3840:  $C_2 \wr S_5$ x 3
30720:  20T555
61440:  20T664, 32T1520177 x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$

Low degree siblings

20T992 x 3, 20T994 x 4, 40T153084 x 2, 40T153178 x 2, 40T153250 x 2, 40T153252 x 2, 40T153266 x 2, 40T153390 x 2, 40T153544 x 2, 40T153629 x 2, 40T153699 x 2, 40T153703 x 2, 40T153800 x 2, 40T153812 x 2, 40T153815 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 280 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1966080=2^{17} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.