Properties

Label 20T991
Order \(1966080\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $991$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11)(2,12)(3,20,7,15)(4,19,8,16)(5,14,9,17)(6,13,10,18), (1,20,8,15)(2,19,7,16)(3,14)(4,13)(5,11,10,17,6,12,9,18), (1,19,18,2,20,17)(3,4)(7,12,9,8,11,10)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
120:  $S_5$
240:  $S_5\times C_2$
1920:  $(C_2^4:A_5) : C_2$ x 3
3840:  $C_2 \wr S_5$ x 3
30720:  20T555
61440:  20T664

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$

Low degree siblings

20T989 x 4, 20T991 x 3, 40T153072 x 2, 40T153179 x 2, 40T153265 x 2, 40T153389 x 2, 40T153405 x 2, 40T153407 x 2, 40T153530 x 2, 40T153532 x 2, 40T153701 x 2, 40T153708 x 2, 40T153711 x 4, 40T153805 x 2, 40T153809 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 265 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1966080=2^{17} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.