Properties

Label 20T990
Order \(1966080\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $990$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,5,11,15,2,6,12,16)(3,4)(7,8)(13,14)(17,18), (1,8,13,16)(2,7,14,15)(3,6,11,18,4,5,12,17)(9,10), (1,8)(2,7)(3,10,13,20,4,9,14,19)(5,15,6,16)(11,18)(12,17)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
120:  $S_5$
240:  $S_5\times C_2$
1920:  $(C_2^4:A_5) : C_2$ x 3
3840:  $C_2 \wr S_5$ x 3
30720:  20T555
61440:  20T664

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $C_2 \wr S_5$

Low degree siblings

20T990 x 7, 40T153180 x 4, 40T153267 x 4, 40T153391 x 4, 40T153700 x 4, 40T153707 x 4, 40T153802 x 4, 40T153814 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 280 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $1966080=2^{17} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.