Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $96$ | |
| Group : | $D_5\wr C_2:C_2$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12,10,3,17,16,5,7,14,19)(2,11,9,4,18,15,6,8,13,20), (1,9,5,18)(2,10,6,17)(3,4)(7,15,19,11)(8,16,20,12)(13,14), (1,14,5,17,10)(2,13,6,18,9)(3,7)(4,8)(11,20)(12,19) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $C_2^3$ 16: $Q_8:C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: None
Degree 10: $(D_5 \wr C_2):C_2$
Low degree siblings
10T27 x 3, 20T90 x 3, 20T96 x 2, 20T97 x 3, 25T30, 40T393 x 3, 40T394 x 3, 40T395 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 7,19)( 8,20)(11,15)(12,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $25$ | $2$ | $( 5,17)( 6,18)( 7,19)( 8,20)( 9,13)(10,14)(11,15)(12,16)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $8$ | $5$ | $( 3, 7,12,16,19)( 4, 8,11,15,20)$ |
| $ 5, 5, 2, 2, 2, 2, 1, 1 $ | $40$ | $10$ | $( 3, 7,12,16,19)( 4, 8,11,15,20)( 5,17)( 6,18)( 9,13)(10,14)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $25$ | $4$ | $( 1, 2)( 3, 4)( 5, 9,17,13)( 6,10,18,14)( 7,11,19,15)( 8,12,20,16)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $50$ | $4$ | $( 1, 2)( 3, 4)( 5, 9,17,13)( 6,10,18,14)( 7,15,19,11)( 8,16,20,12)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $25$ | $4$ | $( 1, 2)( 3, 4)( 5,13,17, 9)( 6,14,18,10)( 7,15,19,11)( 8,16,20,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $50$ | $4$ | $( 1, 3)( 2, 4)( 5, 7,17,19)( 6, 8,18,20)( 9,11,13,15)(10,12,14,16)$ |
| $ 10, 10 $ | $40$ | $10$ | $( 1, 3, 5, 7,10,12,14,16,17,19)( 2, 4, 6, 8, 9,11,13,15,18,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $50$ | $4$ | $( 1, 4)( 2, 3)( 5,11,17,15)( 6,12,18,16)( 7, 9,19,13)( 8,10,20,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 4)( 2, 3)( 5,11)( 6,12)( 7,13)( 8,14)( 9,19)(10,20)(15,17)(16,18)$ |
| $ 10, 10 $ | $40$ | $10$ | $( 1, 4, 5,11,10,20,14, 8,17,15)( 2, 3, 6,12, 9,19,13, 7,18,16)$ |
| $ 5, 5, 5, 5 $ | $8$ | $5$ | $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,12,16,19)( 4, 8,11,15,20)$ |
| $ 5, 5, 5, 5 $ | $8$ | $5$ | $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3,12,19, 7,16)( 4,11,20, 8,15)$ |
Group invariants
| Order: | $400=2^{4} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [400, 207] |
| Character table: |
2 4 3 4 1 1 4 3 4 3 3 1 3 3 1 1 1
5 2 1 . 2 1 . . . 1 . 1 . 1 1 2 2
1a 2a 2b 5a 10a 4a 4b 4c 2c 4d 10b 4e 2d 10c 5b 5c
2P 1a 1a 1a 5a 5a 2b 2b 2b 1a 2b 5b 2b 1a 5c 5b 5c
3P 1a 2a 2b 5a 10a 4c 4b 4a 2c 4d 10b 4e 2d 10c 5b 5c
5P 1a 2a 2b 1a 2a 4a 4b 4c 2c 4d 2c 4e 2d 2d 1a 1a
7P 1a 2a 2b 5a 10a 4c 4b 4a 2c 4d 10b 4e 2d 10c 5b 5c
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 -1 -1 1 -1 1 -1 -1 1 1
X.3 1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 1 1 1
X.4 1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 1 1 1
X.5 1 -1 1 1 -1 1 -1 1 1 -1 1 1 -1 -1 1 1
X.6 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
X.7 1 1 1 1 1 -1 -1 -1 1 1 1 -1 -1 -1 1 1
X.8 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 1 1
X.9 2 . -2 2 . A . -A . . . . . . 2 2
X.10 2 . -2 2 . -A . A . . . . . . 2 2
X.11 8 -4 . 3 1 . . . . . . . . . -2 -2
X.12 8 4 . 3 -1 . . . . . . . . . -2 -2
X.13 8 . . -2 . . . . -4 . 1 . . . 3 -2
X.14 8 . . -2 . . . . . . . . -4 1 -2 3
X.15 8 . . -2 . . . . . . . . 4 -1 -2 3
X.16 8 . . -2 . . . . 4 . -1 . . . 3 -2
A = -2*E(4)
= -2*Sqrt(-1) = -2i
|