Properties

Label 20T96
Order \(400\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $D_5\wr C_2:C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $96$
Group :  $D_5\wr C_2:C_2$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,10,3,17,16,5,7,14,19)(2,11,9,4,18,15,6,8,13,20), (1,9,5,18)(2,10,6,17)(3,4)(7,15,19,11)(8,16,20,12)(13,14), (1,14,5,17,10)(2,13,6,18,9)(3,7)(4,8)(11,20)(12,19)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $C_2^3$
16:  $Q_8:C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 5: None

Degree 10: $(D_5 \wr C_2):C_2$

Low degree siblings

10T27 x 3, 20T90 x 3, 20T96 x 2, 20T97 x 3, 25T30, 40T393 x 3, 40T394 x 3, 40T395 x 3

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $10$ $2$ $( 7,19)( 8,20)(11,15)(12,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $25$ $2$ $( 5,17)( 6,18)( 7,19)( 8,20)( 9,13)(10,14)(11,15)(12,16)$
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $8$ $5$ $( 3, 7,12,16,19)( 4, 8,11,15,20)$
$ 5, 5, 2, 2, 2, 2, 1, 1 $ $40$ $10$ $( 3, 7,12,16,19)( 4, 8,11,15,20)( 5,17)( 6,18)( 9,13)(10,14)$
$ 4, 4, 4, 4, 2, 2 $ $25$ $4$ $( 1, 2)( 3, 4)( 5, 9,17,13)( 6,10,18,14)( 7,11,19,15)( 8,12,20,16)$
$ 4, 4, 4, 4, 2, 2 $ $50$ $4$ $( 1, 2)( 3, 4)( 5, 9,17,13)( 6,10,18,14)( 7,15,19,11)( 8,16,20,12)$
$ 4, 4, 4, 4, 2, 2 $ $25$ $4$ $( 1, 2)( 3, 4)( 5,13,17, 9)( 6,14,18,10)( 7,15,19,11)( 8,16,20,12)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $10$ $2$ $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)$
$ 4, 4, 4, 4, 2, 2 $ $50$ $4$ $( 1, 3)( 2, 4)( 5, 7,17,19)( 6, 8,18,20)( 9,11,13,15)(10,12,14,16)$
$ 10, 10 $ $40$ $10$ $( 1, 3, 5, 7,10,12,14,16,17,19)( 2, 4, 6, 8, 9,11,13,15,18,20)$
$ 4, 4, 4, 4, 2, 2 $ $50$ $4$ $( 1, 4)( 2, 3)( 5,11,17,15)( 6,12,18,16)( 7, 9,19,13)( 8,10,20,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $10$ $2$ $( 1, 4)( 2, 3)( 5,11)( 6,12)( 7,13)( 8,14)( 9,19)(10,20)(15,17)(16,18)$
$ 10, 10 $ $40$ $10$ $( 1, 4, 5,11,10,20,14, 8,17,15)( 2, 3, 6,12, 9,19,13, 7,18,16)$
$ 5, 5, 5, 5 $ $8$ $5$ $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3, 7,12,16,19)( 4, 8,11,15,20)$
$ 5, 5, 5, 5 $ $8$ $5$ $( 1, 5,10,14,17)( 2, 6, 9,13,18)( 3,12,19, 7,16)( 4,11,20, 8,15)$

Group invariants

Order:  $400=2^{4} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [400, 207]
Character table:   
      2  4  3  4  1   1  4  3  4  3  3   1  3  3   1  1  1
      5  2  1  .  2   1  .  .  .  1  .   1  .  1   1  2  2

        1a 2a 2b 5a 10a 4a 4b 4c 2c 4d 10b 4e 2d 10c 5b 5c
     2P 1a 1a 1a 5a  5a 2b 2b 2b 1a 2b  5b 2b 1a  5c 5b 5c
     3P 1a 2a 2b 5a 10a 4c 4b 4a 2c 4d 10b 4e 2d 10c 5b 5c
     5P 1a 2a 2b 1a  2a 4a 4b 4c 2c 4d  2c 4e 2d  2d 1a 1a
     7P 1a 2a 2b 5a 10a 4c 4b 4a 2c 4d 10b 4e 2d 10c 5b 5c

X.1      1  1  1  1   1  1  1  1  1  1   1  1  1   1  1  1
X.2      1 -1  1  1  -1 -1  1 -1 -1  1  -1  1 -1  -1  1  1
X.3      1 -1  1  1  -1 -1  1 -1  1 -1   1 -1  1   1  1  1
X.4      1 -1  1  1  -1  1 -1  1 -1  1  -1 -1  1   1  1  1
X.5      1 -1  1  1  -1  1 -1  1  1 -1   1  1 -1  -1  1  1
X.6      1  1  1  1   1 -1 -1 -1 -1 -1  -1  1  1   1  1  1
X.7      1  1  1  1   1 -1 -1 -1  1  1   1 -1 -1  -1  1  1
X.8      1  1  1  1   1  1  1  1 -1 -1  -1 -1 -1  -1  1  1
X.9      2  . -2  2   .  A  . -A  .  .   .  .  .   .  2  2
X.10     2  . -2  2   . -A  .  A  .  .   .  .  .   .  2  2
X.11     8 -4  .  3   1  .  .  .  .  .   .  .  .   . -2 -2
X.12     8  4  .  3  -1  .  .  .  .  .   .  .  .   . -2 -2
X.13     8  .  . -2   .  .  .  . -4  .   1  .  .   .  3 -2
X.14     8  .  . -2   .  .  .  .  .  .   .  . -4   1 -2  3
X.15     8  .  . -2   .  .  .  .  .  .   .  .  4  -1 -2  3
X.16     8  .  . -2   .  .  .  .  4  .  -1  .  .   .  3 -2

A = -2*E(4)
  = -2*Sqrt(-1) = -2i