Properties

Label 20T955
Order \(819200\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $955$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,18,7,2,4,17,8)(5,19,13,12,6,20,14,11)(9,15)(10,16), (1,2)(3,19,7,11)(4,20,8,12)(9,10)(13,14)(15,16)(17,18), (1,16,18,12,5,20,9,4)(2,15,17,11,6,19,10,3)(7,13)(8,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_4$ x 4, $C_2^2$ x 7
8:  $D_{4}$ x 8, $C_4\times C_2$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 4, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$
32:  $C_4\wr C_2$ x 4, $C_2^2 \wr C_2$, $C_4 \times D_4$ x 2, $C_2 \times (C_2^2:C_4)$, 16T34 x 2, 16T37
64:  16T111 x 2, 32T239
128:  16T211
800:  $F_5 \wr C_2$
1600:  20T212
3200:  20T271
204800:  20T860
409600:  20T923

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $F_5 \wr C_2$

Low degree siblings

20T955 x 7, 40T147042 x 4, 40T147045 x 4, 40T147092 x 4, 40T147095 x 4, 40T147142 x 4, 40T147145 x 4, 40T147148 x 4, 40T147149 x 4, 40T147197 x 8, 40T147234 x 4, 40T147235 x 4, 40T147236 x 8, 40T147237 x 8, 40T147238 x 8, 40T147239 x 8, 40T147240 x 8, 40T147241 x 8, 40T147242 x 8, 40T147243 x 8, 40T147245 x 4, 40T147254 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 275 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $819200=2^{15} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.