Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $93$ | |
| Group : | $D_5^2:C_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,16,2,15)(3,10,8,13)(4,9,7,14)(5,12,18,20)(6,11,17,19), (1,16,14,4,6,11,17,19,9,7,2,15,13,3,5,12,18,20,10,8) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_4$ x 2, $C_2^2$ 8: $D_{4}$ x 2, $C_4\times C_2$ 16: $C_2^2:C_4$ 200: $D_5^2 : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: $C_4$
Degree 5: None
Degree 10: $D_5^2 : C_2$
Low degree siblings
20T93, 20T94 x 2, 20T95 x 2, 40T330 x 2, 40T335, 40T337, 40T339, 40T341, 40T364, 40T367, 40T372 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 7,20)( 8,19)(11,16)(12,15)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $25$ | $2$ | $( 5,17)( 6,18)( 7,20)( 8,19)( 9,13)(10,14)(11,16)(12,15)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 3, 7,11,16,20)( 4, 8,12,15,19)$ |
| $ 5, 5, 2, 2, 2, 2, 1, 1 $ | $20$ | $10$ | $( 3, 7,11,16,20)( 4, 8,12,15,19)( 5,17)( 6,18)( 9,13)(10,14)$ |
| $ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $4$ | $5$ | $( 3,11,20, 7,16)( 4,12,19, 8,15)$ |
| $ 5, 5, 2, 2, 2, 2, 1, 1 $ | $20$ | $10$ | $( 3,11,20, 7,16)( 4,12,19, 8,15)( 5,17)( 6,18)( 9,13)(10,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $10$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7,19)( 8,20)( 9,10)(11,15)(12,16)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $25$ | $2$ | $( 1, 2)( 3, 4)( 5,18)( 6,17)( 7,19)( 8,20)( 9,14)(10,13)(11,15)(12,16)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $4$ | $10$ | $( 1, 2)( 3, 8,11,15,20, 4, 7,12,16,19)( 5, 6)( 9,10)(13,14)(17,18)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $20$ | $10$ | $( 1, 2)( 3, 8,11,15,20, 4, 7,12,16,19)( 5,18)( 6,17)( 9,14)(10,13)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $4$ | $10$ | $( 1, 2)( 3,12,20, 8,16, 4,11,19, 7,15)( 5, 6)( 9,10)(13,14)(17,18)$ |
| $ 10, 2, 2, 2, 2, 2 $ | $20$ | $10$ | $( 1, 2)( 3,12,20, 8,16, 4,11,19, 7,15)( 5,18)( 6,17)( 9,14)(10,13)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,11,10,12)(13,16,14,15)(17,19,18,20)$ |
| $ 4, 4, 4, 4, 4 $ | $50$ | $4$ | $( 1, 3, 2, 4)( 5, 8,18,20)( 6, 7,17,19)( 9,11,14,15)(10,12,13,16)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 3, 5, 8, 9,11,14,15,18,20, 2, 4, 6, 7,10,12,13,16,17,19)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 3,10,12,18,20, 5, 8,13,16, 2, 4, 9,11,17,19, 6, 7,14,15)$ |
| $ 4, 4, 4, 4, 4 $ | $10$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $50$ | $4$ | $( 1, 4, 2, 3)( 5, 7,18,19)( 6, 8,17,20)( 9,12,14,16)(10,11,13,15)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 4, 5, 7, 9,12,14,16,18,19, 2, 3, 6, 8,10,11,13,15,17,20)$ |
| $ 20 $ | $20$ | $20$ | $( 1, 4,10,11,18,19, 5, 7,13,15, 2, 3, 9,12,17,20, 6, 8,14,16)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1, 5, 9,14,18, 2, 6,10,13,17)( 3, 8,11,15,20, 4, 7,12,16,19)$ |
| $ 10, 10 $ | $8$ | $10$ | $( 1, 5, 9,14,18, 2, 6,10,13,17)( 3,12,20, 8,16, 4,11,19, 7,15)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 6, 9,13,18)( 2, 5,10,14,17)( 3, 7,11,16,20)( 4, 8,12,15,19)$ |
| $ 5, 5, 5, 5 $ | $8$ | $5$ | $( 1, 6, 9,13,18)( 2, 5,10,14,17)( 3,11,20, 7,16)( 4,12,19, 8,15)$ |
| $ 5, 5, 5, 5 $ | $4$ | $5$ | $( 1, 9,18, 6,13)( 2,10,17, 5,14)( 3,11,20, 7,16)( 4,12,19, 8,15)$ |
| $ 10, 10 $ | $4$ | $10$ | $( 1,10,18, 5,13, 2, 9,17, 6,14)( 3,12,20, 8,16, 4,11,19, 7,15)$ |
Group invariants
| Order: | $400=2^{4} \cdot 5^{2}$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [400, 129] |
| Character table: Data not available. |