Properties

Label 20T925
Order \(409600\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $925$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (19,20), (1,12,2,11)(3,13)(4,14)(5,15)(6,16)(7,17)(8,18)(9,20,10,19), (1,14,18,6)(2,13,17,5)(3,7,15,11)(4,8,16,12)(9,10)(19,20), (1,2)(5,6)(7,19,8,20)(11,15)(12,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $D_{4}$ x 4, $C_2^3$ x 15
16:  $D_4\times C_2$ x 6, $Q_8:C_2$ x 4, $C_2^4$
32:  $C_2 \times (C_4\times C_2):C_2$ x 2, $C_2^2 \times D_4$
64:  16T117
400:  $(D_5 \wr C_2):C_2$
800:  20T154
1600:  20T214
102400:  20T763
204800:  20T872

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $(D_5 \wr C_2):C_2$

Low degree siblings

20T925 x 7, 40T138455 x 4, 40T138495 x 4, 40T138496 x 4, 40T138503 x 4, 40T138506 x 4, 40T138514 x 4, 40T138659 x 4, 40T138660 x 4, 40T138662 x 4, 40T138663 x 4, 40T138811 x 8, 40T138812 x 8, 40T138813 x 8, 40T138814 x 8, 40T138815 x 8, 40T138816 x 8, 40T138817 x 8, 40T138818 x 8, 40T138835 x 4, 40T138838 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 190 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $409600=2^{14} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.