Properties

Label 20T92
Order \(400\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No
Group: $C_2\times D_5\wr C_2$

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $92$
Group :  $C_2\times D_5\wr C_2$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,20,16,11,7)(4,19,15,12,8), (1,10)(2,9)(5,6)(13,17)(14,18), (1,17,13,10,6,2,18,14,9,5)(3,4)(7,8)(11,12)(15,16)(19,20), (1,12)(2,11)(3,14)(4,13)(5,16)(6,15)(7,17)(8,18)(9,19)(10,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
200:  $D_5^2 : C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 5: None

Degree 10: $D_5^2 : C_2$

Low degree siblings

20T92 x 3, 20T98 x 2, 20T100 x 4, 40T329 x 4, 40T340 x 2, 40T342 x 2, 40T362, 40T366, 40T373 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

Cycle TypeSizeOrderRepresentative
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $1$ $1$ $()$
$ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ $25$ $2$ $( 5,17)( 6,18)( 7,20)( 8,19)( 9,13)(10,14)(11,16)(12,15)$
$ 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $10$ $2$ $( 3, 4)( 7,19)( 8,20)(11,15)(12,16)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ $10$ $2$ $( 3, 4)( 5,17)( 6,18)( 7, 8)( 9,13)(10,14)(11,12)(15,16)(19,20)$
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $5$ $( 3, 7,11,16,20)( 4, 8,12,15,19)$
$ 10, 2, 2, 2, 2, 1, 1 $ $20$ $10$ $( 3, 8,11,15,20, 4, 7,12,16,19)( 5,17)( 6,18)( 9,13)(10,14)$
$ 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ $4$ $5$ $( 3,11,20, 7,16)( 4,12,19, 8,15)$
$ 10, 2, 2, 2, 2, 1, 1 $ $20$ $10$ $( 3,12,20, 8,16, 4,11,19, 7,15)( 5,17)( 6,18)( 9,13)(10,14)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $1$ $2$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $25$ $2$ $( 1, 2)( 3, 4)( 5,18)( 6,17)( 7,19)( 8,20)( 9,14)(10,13)(11,15)(12,16)$
$ 5, 5, 2, 2, 2, 2, 2 $ $20$ $10$ $( 1, 2)( 3, 7,11,16,20)( 4, 8,12,15,19)( 5,18)( 6,17)( 9,14)(10,13)$
$ 10, 2, 2, 2, 2, 2 $ $4$ $10$ $( 1, 2)( 3, 8,11,15,20, 4, 7,12,16,19)( 5, 6)( 9,10)(13,14)(17,18)$
$ 5, 5, 2, 2, 2, 2, 2 $ $20$ $10$ $( 1, 2)( 3,11,20, 7,16)( 4,12,19, 8,15)( 5,18)( 6,17)( 9,14)(10,13)$
$ 10, 2, 2, 2, 2, 2 $ $4$ $10$ $( 1, 2)( 3,12,20, 8,16, 4,11,19, 7,15)( 5, 6)( 9,10)(13,14)(17,18)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $10$ $2$ $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)(17,19)(18,20)$
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ $10$ $2$ $( 1, 3)( 2, 4)( 5,19)( 6,20)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$
$ 4, 4, 4, 4, 4 $ $50$ $4$ $( 1, 3, 2, 4)( 5, 8,18,20)( 6, 7,17,19)( 9,11,14,15)(10,12,13,16)$
$ 4, 4, 4, 4, 4 $ $50$ $4$ $( 1, 3, 2, 4)( 5,19,18, 7)( 6,20,17, 8)( 9,16,14,12)(10,15,13,11)$
$ 10, 10 $ $20$ $10$ $( 1, 3, 6, 7, 9,11,13,16,18,20)( 2, 4, 5, 8,10,12,14,15,17,19)$
$ 10, 10 $ $20$ $10$ $( 1, 3, 6,20, 9,16,13,11,18, 7)( 2, 4, 5,19,10,15,14,12,17, 8)$
$ 10, 10 $ $20$ $10$ $( 1, 3, 9,11,18,20, 6, 7,13,16)( 2, 4,10,12,17,19, 5, 8,14,15)$
$ 10, 10 $ $20$ $10$ $( 1, 3, 9,16,18, 7, 6,20,13,11)( 2, 4,10,15,17, 8, 5,19,14,12)$
$ 10, 10 $ $4$ $10$ $( 1, 5, 9,14,18, 2, 6,10,13,17)( 3, 8,11,15,20, 4, 7,12,16,19)$
$ 10, 10 $ $8$ $10$ $( 1, 5, 9,14,18, 2, 6,10,13,17)( 3,12,20, 8,16, 4,11,19, 7,15)$
$ 5, 5, 5, 5 $ $4$ $5$ $( 1, 6, 9,13,18)( 2, 5,10,14,17)( 3, 7,11,16,20)( 4, 8,12,15,19)$
$ 5, 5, 5, 5 $ $8$ $5$ $( 1, 6, 9,13,18)( 2, 5,10,14,17)( 3,11,20, 7,16)( 4,12,19, 8,15)$
$ 5, 5, 5, 5 $ $4$ $5$ $( 1, 9,18, 6,13)( 2,10,17, 5,14)( 3,11,20, 7,16)( 4,12,19, 8,15)$
$ 10, 10 $ $4$ $10$ $( 1,10,18, 5,13, 2, 9,17, 6,14)( 3,12,20, 8,16, 4,11,19, 7,15)$

Group invariants

Order:  $400=2^{4} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  [400, 211]
Character table: Data not available.