Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $905$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,10,8,16,4,2,9,7,15,3)(5,14,12,20,18)(6,13,11,19,17), (1,6,9,13,8,12,15,19,4,18,2,5,10,14,7,11,16,20,3,17), (1,6,11,16)(2,5,12,15)(7,20,8,19)(9,17)(10,18) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $C_2^3$ 10: $D_{5}$ 20: $D_{10}$ x 3 40: 20T8 160: $(C_2^4 : C_5) : C_2$ x 5 320: $C_2\times (C_2^4 : D_5)$ x 15 640: 20T141 x 5 2560: 20T240 5120: 20T307 x 3 10240: 20T412 163840: 40T52754 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $D_{5}$
Degree 10: $C_2\times (C_2^4 : D_5)$
Low degree siblings
20T905 x 63, 40T109509 x 32, 40T109778 x 16, 40T109783 x 32, 40T110725 x 64, 40T110868 x 32, 40T110869 x 32, 40T110872 x 32, 40T110873 x 32, 40T110907 x 16, 40T110908 x 16, 40T110909 x 32, 40T110917 x 16, 40T110921 x 32, 40T110922 x 32, 40T111126 x 32, 40T111132 x 64, 40T112018 x 16, 40T112023 x 16, 40T112058 x 32, 40T112059 x 32, 40T112061 x 32, 40T112064 x 32, 40T112169 x 32, 40T112223 x 64, 40T112224 x 64, 40T117318 x 16, 40T117333 x 16, 40T117384 x 32, 40T117401 x 32, 40T117406 x 32, 40T117491 x 32, 40T117541 x 32, 40T117576 x 32, 40T117578 x 32, 40T117579 x 64, 40T117581 x 64, 40T117582 x 64, 40T117583 x 64, 40T117584 x 64, 40T135399 x 32, 40T135401 x 32, 40T135404 x 64, 40T135405 x 64, 40T135406 x 64, 40T135407 x 64, 40T135408 x 64, 40T136489 x 16, 40T136577 x 32, 40T136593 x 32, 40T136788 x 32, 40T136799 x 32, 40T136851 x 32, 40T137108 x 32, 40T137113 x 32, 40T137114 x 32, 40T137130 x 64, 40T137131 x 64, 40T137132 x 64, 40T137133 x 64, 40T137134 x 64, 40T137135 x 64, 40T137138 x 64, 40T137142 x 64, 40T137144 x 64, 40T137146 x 64, 40T137147 x 32Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 512 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $327680=2^{16} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | Data not available |
| Character table: Data not available. |