Properties

Label 20T887
Order \(245760\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $887$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,18,5,14,10,2,17,6,13,9)(3,19,12,8,16)(4,20,11,7,15), (1,16,13,7,2,15,14,8)(3,18,11,6)(4,17,12,5)(9,20)(10,19), (1,9,17,13,2,10,18,14)(3,12,20,8)(4,11,19,7)(5,6)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
120:  $S_5$
240:  $S_5\times C_2$ x 3
480:  20T117
960:  20T174
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$ x 3
7680:  20T368
15360:  20T466
61440:  20T667
122880:  20T794

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5\times C_2$

Low degree siblings

20T886 x 4, 20T887 x 3, 40T106464 x 4, 40T106465 x 4, 40T106491 x 2, 40T106516 x 2, 40T106517 x 2, 40T106549 x 4, 40T106550 x 4, 40T106551 x 4, 40T106552 x 4, 40T106571 x 2, 40T106600 x 2, 40T106608 x 2, 40T106662 x 2, 40T106669 x 2, 40T106672 x 4, 40T106674 x 4, 40T106757 x 2, 40T106759 x 2, 40T106762 x 2, 40T106766 x 2, 40T106771 x 4, 40T106826 x 4, 40T106827 x 4, 40T106828 x 4, 40T106829 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 201 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $245760=2^{14} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.