Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $88$ | |
| Group : | $C_2^4:C_5:C_4$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,3,2,4)(5,20,16,10,6,19,15,9)(7,18,14,11,8,17,13,12), (1,8,16,10,2,7,15,9)(3,5,14,11,4,6,13,12)(17,19,18,20) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 20: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $F_5$
Degree 10: $F_5$
Low degree siblings
10T24, 10T25, 16T711, 20T77, 20T78, 20T79, 20T80, 20T83, 32T9312, 40T206, 40T207, 40T296, 40T297, 40T298, 40T299, 40T300, 40T301, 40T302, 40T303Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 2, 2, 2, 2, 1, 1, 1, 1 $ | $40$ | $4$ | $( 5,15)( 6,16)( 7,13)( 8,14)( 9,19,10,20)(11,18,12,17)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 2)( 3, 4)( 5,15)( 6,16)( 7,13)( 8,14)( 9,19)(10,20)(11,18)(12,17)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 2)( 3, 4)( 5,15, 6,16)( 7,13, 8,14)( 9,19,10,20)(11,18,12,17)$ |
| $ 4, 4, 4, 4, 4 $ | $40$ | $4$ | $( 1, 3, 2, 4)( 5, 9,15,19)( 6,10,16,20)( 7,12,13,17)( 8,11,14,18)$ |
| $ 8, 8, 4 $ | $40$ | $8$ | $( 1, 3, 2, 4)( 5,19,15,10, 6,20,16, 9)( 7,17,13,11, 8,18,14,12)$ |
| $ 8, 8, 4 $ | $40$ | $8$ | $( 1, 4, 2, 3)( 5, 9,15,19, 6,10,16,20)( 7,12,13,17, 8,11,14,18)$ |
| $ 4, 4, 4, 4, 4 $ | $40$ | $4$ | $( 1, 4, 2, 3)( 5,19,16, 9)( 6,20,15,10)( 7,17,14,12)( 8,18,13,11)$ |
| $ 5, 5, 5, 5 $ | $64$ | $5$ | $( 1, 5,17,11,15)( 2, 6,18,12,16)( 3, 7,20, 9,13)( 4, 8,19,10,14)$ |
Group invariants
| Order: | $320=2^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [320, 1635] |
| Character table: |
2 6 5 6 3 4 4 3 3 3 3 .
5 1 . . . . . . . . . 1
1a 2a 2b 4a 2c 4b 4c 8a 8b 4d 5a
2P 1a 1a 1a 2a 1a 2b 2c 4b 4b 2c 5a
3P 1a 2a 2b 4a 2c 4b 4d 8b 8a 4c 5a
5P 1a 2a 2b 4a 2c 4b 4c 8a 8b 4d 1a
7P 1a 2a 2b 4a 2c 4b 4d 8b 8a 4c 5a
X.1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 -1 -1 -1 -1 1
X.3 1 1 1 -1 -1 -1 A -A A -A 1
X.4 1 1 1 -1 -1 -1 -A A -A A 1
X.5 4 4 4 . . . . . . . -1
X.6 5 1 -3 -1 1 1 -1 1 1 -1 .
X.7 5 1 -3 -1 1 1 1 -1 -1 1 .
X.8 5 1 -3 1 -1 -1 A A -A -A .
X.9 5 1 -3 1 -1 -1 -A -A A A .
X.10 10 -2 2 . -2 2 . . . . .
X.11 10 -2 2 . 2 -2 . . . . .
A = -E(4)
= -Sqrt(-1) = -i
|