Properties

Label 20T876
Order \(204800\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $876$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,11)(2,12)(3,10)(4,9)(5,8)(6,7)(13,20)(14,19)(15,18,16,17), (1,11,6,8,9,3,13,20,17,15)(2,12,5,7,10,4,14,19,18,16), (1,12)(2,11)(3,13,20,10)(4,14,19,9)(5,8,18,15)(6,7,17,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
200:  $D_5^2 : C_2$
400:  20T92
800:  20T168
51200:  20T637
102400:  20T756

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $D_5^2 : C_2$

Low degree siblings

20T876 x 23, 40T105779 x 12, 40T105792 x 12, 40T105834 x 12, 40T105879 x 24, 40T106002 x 12, 40T106003 x 12, 40T106148 x 24, 40T106149 x 24, 40T106150 x 24, 40T106151 x 24, 40T106152 x 24, 40T106153 x 24, 40T106154 x 24, 40T106155 x 24, 40T106163 x 24, 40T106164 x 24, 40T106165 x 24, 40T106171 x 24, 40T106182 x 24, 40T106190 x 48, 40T106193 x 24, 40T106195 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 230 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $204800=2^{13} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.