Properties

Label 20T872
Order \(204800\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $872$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,6,2,5)(3,4)(7,8)(9,17)(10,18)(11,12)(15,16)(19,20), (1,17,6,10,2,18,5,9)(7,16,20,12)(8,15,19,11)(13,14), (7,20)(8,19)(9,10)(11,15)(12,16)(17,18), (1,17,14,9,5)(2,18,13,10,6)(7,8)(11,12), (1,12)(2,11)(3,14)(4,13)(5,16,6,15)(7,17)(8,18)(9,19,10,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 15
4:  $C_2^2$ x 35
8:  $C_2^3$ x 15
16:  $Q_8:C_2$ x 2, $C_2^4$
32:  $C_2 \times (C_4\times C_2):C_2$
400:  $(D_5 \wr C_2):C_2$
800:  20T154
102400:  20T763

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $(D_5 \wr C_2):C_2$

Low degree siblings

20T872 x 3, 40T105867 x 2, 40T105897 x 2, 40T105903 x 2, 40T105918 x 2, 40T105931 x 2, 40T105952 x 2, 40T106088 x 4, 40T106089 x 4, 40T106090 x 4, 40T106091 x 4, 40T106205 x 2, 40T106215 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 116 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $204800=2^{13} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.