Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $87$ | |
| Group : | $C_2\times C_2^4:D_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,12)(2,11)(3,13)(4,14)(7,8)(17,18), (1,16)(2,15)(3,4)(5,11)(6,12)(7,19)(8,20)(9,17)(10,18), (1,12,2,11)(3,10,13,19)(4,9,14,20)(5,8,6,7)(15,18,16,17) | |
| $|\Aut(F/K)|$: | $2$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 10: $D_{5}$ 20: $D_{10}$ 160: $(C_2^4 : C_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $D_{5}$
Degree 10: $(C_2^4 : C_5) : C_2$
Low degree siblings
10T23 x 6, 20T71 x 6, 20T73 x 6, 20T76 x 6, 20T81 x 3, 20T85 x 6, 20T87 x 5, 32T9313 x 2, 40T204 x 3, 40T270 x 12, 40T271 x 12, 40T272 x 3, 40T273 x 2, 40T284 x 6, 40T286 x 6, 40T288 x 3, 40T293 x 3, 40T295 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,15)( 6,16)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 4)( 7,17)( 8,18)( 9,19)(10,20)(13,14)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3, 4)( 5,15)( 6,16)( 7,17)( 8,18)( 9,10)(13,14)(19,20)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $20$ | $4$ | $( 3, 9,13,20)( 4,10,14,19)( 5, 7,15,17)( 6, 8,16,18)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $20$ | $2$ | $( 3, 9)( 4,10)( 5,17)( 6,18)( 7,15)( 8,16)(11,12)(13,20)(14,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $20$ | $2$ | $( 3,10)( 4, 9)( 5, 7)( 6, 8)(11,12)(13,19)(14,20)(15,17)(16,18)$ |
| $ 4, 4, 4, 4, 2, 1, 1 $ | $20$ | $4$ | $( 3,10,13,19)( 4, 9,14,20)( 5,17,15, 7)( 6,18,16, 8)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 5,15)( 6,16)( 7,17)( 8,18)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3, 4)( 5,16)( 6,15)( 7, 8)( 9,19)(10,20)(11,12)(13,14)(17,18)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,14)( 4,13)( 5,16)( 6,15)( 7,18)( 8,17)( 9,19)(10,20)(11,12)$ |
| $ 4, 4, 4, 4, 4 $ | $20$ | $4$ | $( 1, 3, 2, 4)( 5,10,16,20)( 6, 9,15,19)( 7,17, 8,18)(11,14,12,13)$ |
| $ 4, 4, 4, 4, 4 $ | $20$ | $4$ | $( 1, 3, 2, 4)( 5,19,16, 9)( 6,20,15,10)( 7,17, 8,18)(11,14,12,13)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1, 3, 5, 8, 9, 2, 4, 6, 7,10)(11,13,15,17,19,12,14,16,18,20)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 3, 5,17,19)( 2, 4, 6,18,20)( 7,10,12,14,16)( 8, 9,11,13,15)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 3,12,13)( 2, 4,11,14)( 5,10)( 6, 9)( 7,17, 8,18)(15,19)(16,20)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 3,12,13)( 2, 4,11,14)( 5,19)( 6,20)( 7,17, 8,18)( 9,16)(10,15)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 5, 9,14,17)( 2, 6,10,13,18)( 3, 7,12,16,20)( 4, 8,11,15,19)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1, 5,19,13,18, 2, 6,20,14,17)( 3, 7,12,16,10, 4, 8,11,15, 9)$ |
Group invariants
| Order: | $320=2^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [320, 1636] |
| Character table: |
2 6 6 6 6 4 4 4 4 6 6 6 6 4 4 1 1 4 4 1 1
5 1 . . . . . . . . 1 . . . . 1 1 . . 1 1
1a 2a 2b 2c 4a 2d 2e 4b 2f 2g 2h 2i 4c 4d 10a 5a 4e 4f 5b 10b
2P 1a 1a 1a 1a 2f 1a 1a 2f 1a 1a 1a 1a 2h 2h 5b 5b 2b 2b 5a 5a
3P 1a 2a 2b 2c 4a 2d 2e 4b 2f 2g 2h 2i 4c 4d 10b 5b 4e 4f 5a 10a
5P 1a 2a 2b 2c 4a 2d 2e 4b 2f 2g 2h 2i 4c 4d 2g 1a 4e 4f 1a 2g
7P 1a 2a 2b 2c 4a 2d 2e 4b 2f 2g 2h 2i 4c 4d 10b 5b 4e 4f 5a 10a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1
X.3 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1
X.4 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 1 1 -1 -1 1 1
X.5 2 -2 2 -2 . . . . 2 -2 2 -2 . . A -A . . -*A *A
X.6 2 -2 2 -2 . . . . 2 -2 2 -2 . . *A -*A . . -A A
X.7 2 2 2 2 . . . . 2 2 2 2 . . -*A -*A . . -A -A
X.8 2 2 2 2 . . . . 2 2 2 2 . . -A -A . . -*A -*A
X.9 5 -3 1 1 -1 1 1 -1 1 5 -3 1 1 1 . . -1 -1 . .
X.10 5 -3 1 1 1 -1 -1 1 1 5 -3 1 -1 -1 . . 1 1 . .
X.11 5 3 1 -1 -1 -1 1 1 1 -5 -3 -1 -1 1 . . -1 1 . .
X.12 5 3 1 -1 1 1 -1 -1 1 -5 -3 -1 1 -1 . . 1 -1 . .
X.13 5 -1 -3 3 -1 -1 1 1 1 -5 1 -1 1 -1 . . 1 -1 . .
X.14 5 -1 -3 3 1 1 -1 -1 1 -5 1 -1 -1 1 . . -1 1 . .
X.15 5 -1 1 -1 -1 1 -1 1 -3 -5 1 3 -1 1 . . 1 -1 . .
X.16 5 -1 1 -1 1 -1 1 -1 -3 -5 1 3 1 -1 . . -1 1 . .
X.17 5 1 -3 -3 -1 1 1 -1 1 5 1 1 -1 -1 . . 1 1 . .
X.18 5 1 -3 -3 1 -1 -1 1 1 5 1 1 1 1 . . -1 -1 . .
X.19 5 1 1 1 -1 -1 -1 -1 -3 5 1 -3 1 1 . . 1 1 . .
X.20 5 1 1 1 1 1 1 1 -3 5 1 -3 -1 -1 . . -1 -1 . .
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|