Properties

Label 20T846
Order \(163840\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $846$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,10,3,18)(2,15,9,4,17)(5,20,14,7,12)(6,19,13,8,11), (1,7,3,9,15,11,17,14,20,6,2,8,4,10,16,12,18,13,19,5), (1,16,19,14,18,11,6,9,3,7)(2,15,20,13,17,12,5,10,4,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
5:  $C_5$
10:  $C_{10}$ x 3
20:  20T3
80:  $C_2^4 : C_5$ x 17
160:  $C_2 \times (C_2^4 : C_5)$ x 51
320:  20T72 x 17
1280:  20T190
2560:  20T263 x 3
5120:  20T341
10240:  10240T?
81920:  81920T?

Resolvents shown for degrees $\leq 23$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2 \times (C_2^4 : C_5)$

Low degree siblings

20T846 x 511

Siblings are shown with degree $\leq 23$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 649 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $163840=2^{15} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.