Properties

Label 20T845
Order \(163840\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $845$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,9,14,20)(4,10,13,19)(5,18,15,7,6,17,16,8)(11,12), (1,17)(2,18)(3,15,14,6,4,16,13,5)(7,11,8,12)(19,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
10:  $D_{5}$
20:  $D_{10}$
160:  $(C_2^4 : C_5) : C_2$ x 5
320:  $C_2\times (C_2^4 : D_5)$ x 5
2560:  20T240
5120:  20T307
10240:  10240T?
81920:  81920T?

Resolvents shown for degrees $\leq 23$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $D_{5}$

Degree 10: $C_2\times (C_2^4 : D_5)$

Low degree siblings

20T845 x 31

Siblings are shown with degree $\leq 23$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 280 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $163840=2^{15} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.