Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $84$ | |
| Group : | $(C_2\times C_2^4:C_5).C_2$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,11)(2,12)(3,9)(4,10)(5,15,6,16)(7,13,8,14)(17,20,18,19), (1,7)(2,8)(3,5)(4,6)(9,12,10,11)(13,19)(14,20)(15,17)(16,18) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 10: $D_{5}$ 20: 20T2 160: $(C_2^4 : C_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $D_{5}$
Degree 10: $D_5$
Low degree siblings
20T82 x 6, 20T84 x 2, 40T200 x 3, 40T283 x 3, 40T285 x 6, 40T287 x 6, 40T294 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,10)(11,12)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 3, 2, 4)( 5,19, 6,20)( 7,18, 8,17)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 3, 2, 4)( 5,19)( 6,20)( 7,18)( 8,17)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4, 4 $ | $20$ | $4$ | $( 1, 3, 2, 4)( 5,19, 6,20)( 7,18, 8,17)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 3, 2, 4)( 5,19)( 6,20)( 7,18)( 8,17)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 4, 2, 3)( 5,19, 6,20)( 7,18, 8,17)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 4, 2, 3)( 5,19)( 6,20)( 7,18)( 8,17)( 9,15)(10,16)(11,13)(12,14)$ |
| $ 4, 4, 4, 4, 4 $ | $20$ | $4$ | $( 1, 4, 2, 3)( 5,19, 6,20)( 7,18, 8,17)( 9,15,10,16)(11,13,12,14)$ |
| $ 4, 4, 4, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 4, 2, 3)( 5,19)( 6,20)( 7,18)( 8,17)( 9,15,10,16)(11,13,12,14)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 5,13, 9,17)( 2, 6,14,10,18)( 3, 8,15,12,20)( 4, 7,16,11,19)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1, 5,13, 9,17, 2, 6,14,10,18)( 3, 8,15,12,20, 4, 7,16,11,19)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 9, 5,17,13)( 2,10, 6,18,14)( 3,12, 8,20,15)( 4,11, 7,19,16)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1, 9, 5,17,14, 2,10, 6,18,13)( 3,12, 8,20,16, 4,11, 7,19,15)$ |
Group invariants
| Order: | $320=2^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [320, 1583] |
| Character table: |
2 6 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 1 1 1 1
5 1 . . . . . . 1 . . . . . . . . 1 1 1 1
1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 4d 4e 4f 4g 4h 5a 10a 5b 10b
2P 1a 1a 1a 1a 1a 1a 1a 1a 2d 2a 2g 2e 2d 2a 2g 2e 5b 5b 5a 5a
3P 1a 2a 2b 2c 2d 2e 2f 2g 4e 4f 4g 4h 4a 4b 4c 4d 5b 10b 5a 10a
5P 1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 4d 4e 4f 4g 4h 1a 2g 1a 2g
7P 1a 2a 2b 2c 2d 2e 2f 2g 4e 4f 4g 4h 4a 4b 4c 4d 5b 10b 5a 10a
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1
X.3 1 -1 1 1 -1 -1 1 -1 A -A -A A -A A A -A 1 -1 1 -1
X.4 1 -1 1 1 -1 -1 1 -1 -A A A -A A -A -A A 1 -1 1 -1
X.5 2 -2 2 2 -2 -2 2 -2 . . . . . . . . B -B *B -*B
X.6 2 -2 2 2 -2 -2 2 -2 . . . . . . . . *B -*B B -B
X.7 2 2 2 2 2 2 2 2 . . . . . . . . B B *B *B
X.8 2 2 2 2 2 2 2 2 . . . . . . . . *B *B B B
X.9 5 -3 1 1 1 1 -3 5 -1 1 1 -1 -1 1 1 -1 . . . .
X.10 5 -3 1 1 1 1 -3 5 1 -1 -1 1 1 -1 -1 1 . . . .
X.11 5 1 -3 1 1 -3 1 5 -1 -1 1 1 -1 -1 1 1 . . . .
X.12 5 1 -3 1 1 -3 1 5 1 1 -1 -1 1 1 -1 -1 . . . .
X.13 5 1 1 -3 -3 1 1 5 -1 1 -1 1 -1 1 -1 1 . . . .
X.14 5 1 1 -3 -3 1 1 5 1 -1 1 -1 1 -1 1 -1 . . . .
X.15 5 3 1 1 -1 -1 -3 -5 A A A A -A -A -A -A . . . .
X.16 5 3 1 1 -1 -1 -3 -5 -A -A -A -A A A A A . . . .
X.17 5 -1 -3 1 -1 3 1 -5 A -A A -A -A A -A A . . . .
X.18 5 -1 -3 1 -1 3 1 -5 -A A -A A A -A A -A . . . .
X.19 5 -1 1 -3 3 -1 1 -5 A A -A -A -A -A A A . . . .
X.20 5 -1 1 -3 3 -1 1 -5 -A -A A A A A -A -A . . . .
A = -E(4)
= -Sqrt(-1) = -i
B = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
|