Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $81$ | |
| Group : | $C_2\times C_2^4:D_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,6,19,14,8,11,16,9,4,18)(2,5,20,13,7,12,15,10,3,17), (1,3,11,13)(2,4,12,14)(5,9,15,19)(6,10,16,20)(7,18)(8,17) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 3 4: $C_2^2$ 10: $D_{5}$ 20: $D_{10}$ 160: $(C_2^4 : C_5) : C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $D_{5}$
Degree 10: $D_5$, $C_2\times (C_2^4 : D_5)$ x 2
Low degree siblings
10T23 x 6, 20T71 x 6, 20T73 x 6, 20T76 x 6, 20T81 x 2, 20T85 x 6, 20T87 x 6, 32T9313 x 2, 40T204 x 3, 40T270 x 12, 40T271 x 12, 40T272 x 3, 40T273 x 2, 40T284 x 6, 40T286 x 6, 40T288 x 3, 40T293 x 3, 40T295 x 6Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,15)( 6,16)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,13)( 4,14)( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 2)( 3, 9)( 4,10)( 5, 8)( 6, 7)(11,12)(13,19)(14,20)(15,18)(16,17)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 2)( 3, 9,13,19)( 4,10,14,20)( 5, 8)( 6, 7)(11,12)(15,18)(16,17)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 2)( 3, 9)( 4,10)( 5, 8,15,18)( 6, 7,16,17)(11,12)(13,19)(14,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 2)( 3, 9,13,19)( 4,10,14,20)( 5, 8,15,18)( 6, 7,16,17)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $20$ | $2$ | $( 1, 3)( 2, 4)( 5, 9)( 6,10)( 7,18)( 8,17)(11,13)(12,14)(15,19)(16,20)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 3)( 2, 4)( 5, 9,15,19)( 6,10,16,20)( 7,18)( 8,17)(11,13)(12,14)$ |
| $ 4, 4, 2, 2, 2, 2, 2, 2 $ | $20$ | $4$ | $( 1, 3,11,13)( 2, 4,12,14)( 5, 9)( 6,10)( 7,18)( 8,17)(15,19)(16,20)$ |
| $ 4, 4, 4, 4, 2, 2 $ | $20$ | $4$ | $( 1, 3,11,13)( 2, 4,12,14)( 5, 9,15,19)( 6,10,16,20)( 7,18)( 8,17)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 4, 6, 8, 9)( 2, 3, 5, 7,10)(11,14,16,18,19)(12,13,15,17,20)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1, 4, 6, 8, 9,11,14,16,18,19)( 2, 3, 5, 7,10,12,13,15,17,20)$ |
| $ 5, 5, 5, 5 $ | $32$ | $5$ | $( 1, 6, 9, 4, 8)( 2, 5,10, 3, 7)(11,16,19,14,18)(12,15,20,13,17)$ |
| $ 10, 10 $ | $32$ | $10$ | $( 1, 6, 9,14,18,11,16,19, 4, 8)( 2, 5,10,13,17,12,15,20, 3, 7)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
Group invariants
| Order: | $320=2^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [320, 1636] |
| Character table: |
2 6 6 6 6 6 6 6 4 4 4 4 4 4 4 4 1 1 1 1 6
5 1 . . . . . . . . . . . . . . 1 1 1 1 1
1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 2h 4d 4e 4f 5a 10a 5b 10b 2i
2P 1a 1a 1a 1a 1a 1a 1a 1a 2c 2b 2f 1a 2c 2b 2f 5b 5b 5a 5a 1a
3P 1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 2h 4d 4e 4f 5b 10b 5a 10a 2i
5P 1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 2h 4d 4e 4f 1a 2i 1a 2i 2i
7P 1a 2a 2b 2c 2d 2e 2f 2g 4a 4b 4c 2h 4d 4e 4f 5b 10b 5a 10a 2i
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 -1
X.3 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1
X.4 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 1
X.5 2 -2 2 2 -2 -2 2 . . . . . . . . A -A *A -*A -2
X.6 2 -2 2 2 -2 -2 2 . . . . . . . . *A -*A A -A -2
X.7 2 2 2 2 2 2 2 . . . . . . . . A A *A *A 2
X.8 2 2 2 2 2 2 2 . . . . . . . . *A *A A A 2
X.9 5 -3 1 1 1 1 -3 -1 1 1 -1 -1 1 1 -1 . . . . 5
X.10 5 -3 1 1 1 1 -3 1 -1 -1 1 1 -1 -1 1 . . . . 5
X.11 5 3 1 1 -1 -1 -3 -1 -1 -1 -1 1 1 1 1 . . . . -5
X.12 5 3 1 1 -1 -1 -3 1 1 1 1 -1 -1 -1 -1 . . . . -5
X.13 5 -1 -3 1 3 -1 1 -1 -1 1 1 1 1 -1 -1 . . . . -5
X.14 5 -1 -3 1 3 -1 1 1 1 -1 -1 -1 -1 1 1 . . . . -5
X.15 5 -1 1 -3 -1 3 1 -1 1 -1 1 1 -1 1 -1 . . . . -5
X.16 5 -1 1 -3 -1 3 1 1 -1 1 -1 -1 1 -1 1 . . . . -5
X.17 5 1 -3 1 -3 1 1 -1 1 -1 1 -1 1 -1 1 . . . . 5
X.18 5 1 -3 1 -3 1 1 1 -1 1 -1 1 -1 1 -1 . . . . 5
X.19 5 1 1 -3 1 -3 1 -1 -1 1 1 -1 -1 1 1 . . . . 5
X.20 5 1 1 -3 1 -3 1 1 1 -1 -1 1 1 -1 -1 . . . . 5
A = E(5)^2+E(5)^3
= (-1-Sqrt(5))/2 = -1-b5
|