Properties

Label 20T808
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $808$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,8,9,4,2,7,10,3)(5,16,6,15)(11,18,20,14,12,17,19,13), (1,15,9,2,16,10)(3,13,18,7,19,11,4,14,17,8,20,12)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
120:  $S_5$
240:  $S_5\times C_2$
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$, 20T276
7680:  20T365
61440:  30T1280

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: None

Degree 10: $S_5$

Low degree siblings

20T808 x 7, 40T45633 x 4, 40T45637 x 4, 40T45658 x 4, 40T45666 x 4, 40T45690 x 4, 40T45691 x 4, 40T45712 x 8, 40T45776 x 8, 40T45783 x 4, 40T45784 x 8, 40T45786 x 8, 40T45792 x 8, 40T45861 x 4, 40T45884 x 4, 40T45950 x 8, 40T45952 x 8, 40T46028 x 8, 40T46029 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 136 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.