Properties

Label 20T807
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $807$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,19)(2,13,20)(3,16,17,4,15,18)(5,8)(6,7)(9,12)(10,11), (1,8,16,4,6,13)(2,7,15,3,5,14)(9,11)(10,12)(19,20), (1,14,10,17,2,13,9,18)(3,16,12,19,4,15,11,20)(5,6)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $C_2^3$
120:  $S_5$
240:  $S_5\times C_2$ x 3
480:  20T117
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$ x 3
7680:  20T368
61440:  20T682

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$

Low degree siblings

20T807, 20T810 x 2, 40T45778 x 2, 40T45779 x 2, 40T45782 x 4, 40T45807, 40T45850, 40T45905, 40T45915 x 2, 40T45919 x 4, 40T45922 x 4, 40T45947 x 4, 40T45995, 40T46014 x 2, 40T46021 x 2, 40T46043 x 4, 40T46044 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 138 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.