Properties

Label 20T804
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $804$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,8)(2,14,7)(3,16,6)(4,15,5)(9,10)(11,12), (1,9,5,2,10,6)(3,11,7,4,12,8)(13,19,14,20)(15,18,16,17), (1,12,2,11)(3,9,4,10)(5,6)(13,14)(17,18)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $C_2^3$
120:  $S_5$
240:  $S_5\times C_2$ x 3
480:  20T117
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$ x 3
7680:  20T368
61440:  20T667

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$

Low degree siblings

20T794 x 2, 20T804, 40T45694 x 2, 40T45695 x 2, 40T45713 x 4, 40T45736, 40T45742 x 2, 40T45743 x 2, 40T45777 x 2, 40T45780 x 2, 40T45781 x 4, 40T45808, 40T45903, 40T45916 x 2, 40T45920 x 4, 40T45921 x 4, 40T46000, 40T46041 x 2, 40T46042 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 138 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.