Properties

Label 20T802
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $802$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,17,6,10,2,18,5,9)(7,15,19,11)(8,16,20,12)(13,14), (1,15,9,11,6,20,2,16,10,12,5,19)(3,18)(4,17)(7,14)(8,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
120:  $S_5$
240:  $S_5\times C_2$
480:  20T123
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$
7680:  20T369
61440:  20T667

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5\times C_2$

Low degree siblings

20T790 x 2, 20T802, 40T45693 x 2, 40T45696 x 2, 40T45735, 40T45759 x 2, 40T45760 x 2, 40T45854, 40T45917 x 2, 40T45997, 40T45998, 40T46015 x 2, 40T46022 x 2, 40T46045 x 2, 40T46046 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 138 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.