Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $8$ | |
| Group : | $C_2^2\times D_5$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,19,18,15,13,11,10,7,6,3)(2,20,17,16,14,12,9,8,5,4), (1,20)(2,19)(3,17)(4,18)(5,15)(6,16)(7,14)(8,13)(9,11)(10,12), (1,5,10,14,18,2,6,9,13,17)(3,8,11,16,19,4,7,12,15,20) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $C_2^3$ 10: $D_{5}$ 20: $D_{10}$ x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: $D_{5}$
Degree 10: $D_{10}$ x 3
Low degree siblings
20T8 x 3, 40T10Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 3,19)( 4,20)( 5,17)( 6,18)( 7,15)( 8,16)( 9,14)(10,13)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 2)( 3,20)( 4,19)( 5,18)( 6,17)( 7,16)( 8,15)( 9,13)(10,14)(11,12)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 3)( 2, 4)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,13)(12,14)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 3, 6, 7,10,11,13,15,18,19)( 2, 4, 5, 8, 9,12,14,16,17,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $5$ | $2$ | $( 1, 4)( 2, 3)( 5,19)( 6,20)( 7,17)( 8,18)( 9,15)(10,16)(11,14)(12,13)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 4, 6, 8,10,12,13,16,18,20)( 2, 3, 5, 7, 9,11,14,15,17,19)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 5,10,14,18, 2, 6, 9,13,17)( 3, 8,11,16,19, 4, 7,12,15,20)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1, 6,10,13,18)( 2, 5, 9,14,17)( 3, 7,11,15,19)( 4, 8,12,16,20)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 7,13,19, 6,11,18, 3,10,15)( 2, 8,14,20, 5,12,17, 4, 9,16)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 8,13,20, 6,12,18, 4,10,16)( 2, 7,14,19, 5,11,17, 3, 9,15)$ |
| $ 10, 10 $ | $2$ | $10$ | $( 1, 9,18, 5,13, 2,10,17, 6,14)( 3,12,19, 8,15, 4,11,20, 7,16)$ |
| $ 5, 5, 5, 5 $ | $2$ | $5$ | $( 1,10,18, 6,13)( 2, 9,17, 5,14)( 3,11,19, 7,15)( 4,12,20, 8,16)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,11)( 2,12)( 3,13)( 4,14)( 5,16)( 6,15)( 7,18)( 8,17)( 9,20)(10,19)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1,12)( 2,11)( 3,14)( 4,13)( 5,15)( 6,16)( 7,17)( 8,18)( 9,19)(10,20)$ |
Group invariants
| Order: | $40=2^{3} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [40, 13] |
| Character table: |
2 3 3 3 3 3 2 3 2 2 2 2 2 2 2 3 3
5 1 . 1 . . 1 . 1 1 1 1 1 1 1 1 1
1a 2a 2b 2c 2d 10a 2e 10b 10c 5a 10d 10e 10f 5b 2f 2g
2P 1a 1a 1a 1a 1a 5a 1a 5a 5b 5b 5b 5b 5a 5a 1a 1a
3P 1a 2a 2b 2c 2d 10d 2e 10e 10f 5b 10a 10b 10c 5a 2f 2g
5P 1a 2a 2b 2c 2d 2f 2e 2g 2b 1a 2f 2g 2b 1a 2f 2g
7P 1a 2a 2b 2c 2d 10d 2e 10e 10f 5b 10a 10b 10c 5a 2f 2g
X.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
X.2 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1
X.3 1 -1 -1 1 1 -1 -1 1 -1 1 -1 1 -1 1 -1 1
X.4 1 -1 1 -1 -1 1 -1 1 1 1 1 1 1 1 1 1
X.5 1 -1 1 -1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1
X.6 1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 -1 1 -1 1
X.7 1 1 -1 -1 1 1 -1 -1 -1 1 1 -1 -1 1 1 -1
X.8 1 1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 -1 -1
X.9 2 . -2 . . A . -A *A -*A *A -*A A -A -2 2
X.10 2 . -2 . . *A . -*A A -A A -A *A -*A -2 2
X.11 2 . -2 . . -*A . *A A -A -A A *A -*A 2 -2
X.12 2 . -2 . . -A . A *A -*A -*A *A A -A 2 -2
X.13 2 . 2 . . A . A -*A -*A *A *A -A -A -2 -2
X.14 2 . 2 . . *A . *A -A -A A A -*A -*A -2 -2
X.15 2 . 2 . . -*A . -*A -A -A -A -A -*A -*A 2 2
X.16 2 . 2 . . -A . -A -*A -*A -*A -*A -A -A 2 2
A = -E(5)-E(5)^4
= (1-Sqrt(5))/2 = -b5
|