Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $799$ | |
| Parity: | $1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,2)(3,4)(5,16,6,15)(7,14,8,13)(9,18,12,20)(10,17,11,19), (1,3)(2,4)(5,10)(6,9)(7,11)(8,12)(13,17,14,18)(15,19,16,20), (1,12,8,2,11,7)(3,9,6,4,10,5)(13,18,15,20)(14,17,16,19) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ x 7 4: $C_2^2$ x 7 8: $C_2^3$ 120: $S_5$ 240: $S_5\times C_2$ x 3 480: 20T117 1920: $(C_2^4:A_5) : C_2$ x 3 3840: $C_2 \wr S_5$ x 9 7680: 20T368 x 3 30720: 20T555 61440: 20T664 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 4: None
Degree 5: $S_5$
Degree 10: $C_2 \wr S_5$ x 3
Low degree siblings
20T799 x 23, 40T45858 x 6, 40T45918 x 36, 40T45949 x 72, 40T46012 x 36, 40T46027 x 24Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
There are 252 conjugacy classes of elements. Data not shown.
Group invariants
| Order: | $122880=2^{13} \cdot 3 \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | No | |
| GAP id: | Data not available |
| Character table: Data not available. |