Properties

Label 20T797
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $797$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,7,14,19)(2,8,13,20)(3,9,12,17,4,10,11,18)(5,15)(6,16), (1,19,5,4,18,11,9,15,14,7)(2,20,6,3,17,12,10,16,13,8)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
120:  $S_5$
240:  $S_5\times C_2$
480:  20T116
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$
7680:  20T366
61440:  20T667

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5\times C_2$

Low degree siblings

20T792 x 2, 20T797, 40T45698 x 2, 40T45699 x 2, 40T45737, 40T45745 x 2, 40T45746 x 2, 40T45787 x 2, 40T45790 x 2, 40T45803, 40T45912, 40T46006, 40T46011 x 2, 40T46047 x 2, 40T46048 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 108 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.