Properties

Label 20T796
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $796$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,2,3)(5,7,10,16,17,19)(6,8,9,15,18,20)(11,14,12,13), (1,17,6,2,18,5)(3,19)(4,20)(7,15,12)(8,16,11)(9,13)(10,14)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
8:  $D_{4}$
120:  $S_5$
240:  $S_5\times C_2$
480:  20T120
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$
7680:  20T375
61440:  20T667

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: $S_5$

Degree 10: $S_5\times C_2$

Low degree siblings

20T796, 20T800 x 2, 40T45697 x 2, 40T45700 x 2, 40T45734, 40T45751 x 2, 40T45752 x 2, 40T45855, 40T45910, 40T45914, 40T46009 x 2, 40T46019 x 2, 40T46026 x 2, 40T46071 x 2, 40T46072 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 108 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.