Properties

Label 20T791
Order \(122880\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $791$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,2,3)(5,9,16,17,8,12,13,19,6,10,15,18,7,11,14,20), (1,10,5,3,12,7,2,9,6,4,11,8)(13,19)(14,20)(15,18)(16,17)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $C_4\times C_2$
120:  $S_5$
240:  $S_5\times C_2$
480:  20T123
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$
7680:  20T369
30720:  20T568
61440:  20T673

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $C_2 \wr S_5$

Low degree siblings

20T791 x 3, 40T45853 x 2, 40T45900 x 2, 40T46003 x 2, 40T46013 x 4, 40T46020 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 252 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $122880=2^{13} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.