Properties

Label 20T781
Order \(115200\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $781$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,13,2,14)(3,11,4,12)(5,19,6,20)(7,17,10,16)(8,18,9,15), (1,18,3,12,7,20,5,14)(2,17,4,11,8,19,6,13)(9,16)(10,15), (1,16,7,12)(2,15,8,11)(3,20)(4,19)(5,18,9,14)(6,17,10,13)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 6, $C_2^3$
16:  $D_4\times C_2$ x 3
32:  $C_2^2 \wr C_2$
28800:  $S_5^2 \wr C_2$
57600:  20T655

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 5: None

Degree 10: $S_5^2 \wr C_2$

Low degree siblings

20T781 x 7, 24T17918 x 8, 40T45487 x 4, 40T45488 x 8, 40T45489 x 8, 40T45497 x 4, 40T45508 x 4, 40T45542 x 8, 40T45559 x 4, 40T45560 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 119 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $115200=2^{9} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.