Properties

Label 20T756
Order \(102400\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $756$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,14,20,2,11,13,19)(3,5,8,10,4,6,7,9)(15,18,16,17), (1,9)(2,10)(3,19,4,20)(7,15)(8,16)(11,12)(13,18)(14,17), (1,5,9,13,18)(2,6,10,14,17)(3,8,4,7)(11,20,12,19)(15,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
200:  $D_5^2 : C_2$
400:  20T92
51200:  20T637

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $D_5^2 : C_2$

Low degree siblings

20T756 x 5, 20T760 x 6, 40T45249 x 6, 40T45259 x 3, 40T45260 x 3, 40T45307 x 6, 40T45334 x 6, 40T45335 x 6, 40T45336 x 6, 40T45337 x 6, 40T45362 x 6, 40T45363 x 6, 40T45364 x 6, 40T45365 x 6, 40T45422 x 12, 40T45423 x 12, 40T45426 x 6, 40T45428 x 6, 40T45433 x 12, 40T45456 x 6, 40T45458 x 6

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 130 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $102400=2^{12} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.