Properties

Label 20T755
Order \(102400\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $755$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,16,6,11,10,8,14,4,18,19,2,15,5,12,9,7,13,3,17,20), (1,8,14,19,2,7,13,20)(3,17,4,18)(5,11,9,16,6,12,10,15)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_4$ x 2, $C_2^2$
8:  $D_{4}$ x 2, $C_4\times C_2$
16:  $C_2^2:C_4$
200:  $D_5^2 : C_2$
400:  20T93
51200:  20T637

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: None

Degree 5: None

Degree 10: $D_5^2 : C_2$

Low degree siblings

20T755 x 5, 20T771 x 6, 40T45248 x 6, 40T45258 x 3, 40T45261 x 3, 40T45306 x 6, 40T45338 x 6, 40T45339 x 6, 40T45340 x 6, 40T45341 x 6, 40T45342 x 6, 40T45343 x 6, 40T45344 x 6, 40T45345 x 6, 40T45421 x 12, 40T45424 x 12, 40T45425 x 6, 40T45427 x 6, 40T45432 x 12, 40T45455 x 6, 40T45457 x 6

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 130 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $102400=2^{12} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.