Group action invariants
| Degree $n$ : | $20$ | |
| Transitive number $t$ : | $75$ | |
| Group : | $C_4\times C_2^4:C_5$ | |
| Parity: | $-1$ | |
| Primitive: | No | |
| Nilpotency class: | $-1$ (not nilpotent) | |
| Generators: | (1,9,7,19,14,4,11,6,18,16,2,10,8,20,13,3,12,5,17,15), (1,16,17,5,11,3,14,20,8,9,2,15,18,6,12,4,13,19,7,10) | |
| $|\Aut(F/K)|$: | $4$ |
Low degree resolvents
|G/N| Galois groups for stem field(s) 2: $C_2$ 4: $C_4$ 5: $C_5$ 10: $C_{10}$ 20: 20T1 80: $C_2^4 : C_5$ 160: $C_2 \times (C_2^4 : C_5)$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 4: None
Degree 5: $C_5$
Degree 10: $C_{10}$
Low degree siblings
20T75 x 2, 40T198 x 3, 40T289 x 3, 40T290 x 6, 40T291 x 12Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy Classes
| Cycle Type | Size | Order | Representative |
| $ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
| $ 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,10)(11,12)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1 $ | $5$ | $2$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 $ | $1$ | $2$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,19,18,20)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)(17,19,18,20)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,11,10,12)(13,16,14,15)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $5$ | $4$ | $( 1, 3, 2, 4)( 5, 7, 6, 8)( 9,12,10,11)(13,16,14,15)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 3, 2, 4)( 5, 8, 6, 7)( 9,12,10,11)(13,16,14,15)(17,20,18,19)$ |
| $ 4, 4, 4, 4, 4 $ | $1$ | $4$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,11,10,12)(13,15,14,16)(17,19,18,20)$ |
| $ 20 $ | $16$ | $20$ | $( 1, 5,13, 9,17, 3, 8,16,12,20, 2, 6,14,10,18, 4, 7,15,11,19)$ |
| $ 20 $ | $16$ | $20$ | $( 1, 5,13, 9,17, 4, 7,15,11,19, 2, 6,14,10,18, 3, 8,16,12,20)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1, 7,14,12,17)( 2, 8,13,11,18)( 3, 5,15,10,20)( 4, 6,16, 9,19)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1, 7,14,12,17, 2, 8,13,11,18)( 3, 5,15,10,20, 4, 6,16, 9,19)$ |
| $ 20 $ | $16$ | $20$ | $( 1, 9, 7,19,14, 4,11, 6,18,16, 2,10, 8,20,13, 3,12, 5,17,15)$ |
| $ 20 $ | $16$ | $20$ | $( 1, 9, 7,19,13, 3,12, 5,17,16, 2,10, 8,20,14, 4,11, 6,18,15)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1,11, 7,18,14, 2,12, 8,17,13)( 3, 9, 5,19,15, 4,10, 6,20,16)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1,11, 7,18,13)( 2,12, 8,17,14)( 3, 9, 5,19,16)( 4,10, 6,20,15)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1,13,17, 7,11)( 2,14,18, 8,12)( 3,16,20, 5, 9)( 4,15,19, 6,10)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1,13,17, 8,12, 2,14,18, 7,11)( 3,16,20, 6,10, 4,15,19, 5, 9)$ |
| $ 20 $ | $16$ | $20$ | $( 1,15,18, 6,12, 3,13,19, 7,10, 2,16,17, 5,11, 4,14,20, 8, 9)$ |
| $ 20 $ | $16$ | $20$ | $( 1,15,18, 5,11, 4,14,20, 7,10, 2,16,17, 6,12, 3,13,19, 8, 9)$ |
| $ 10, 10 $ | $16$ | $10$ | $( 1,17,11,14, 8, 2,18,12,13, 7)( 3,20, 9,15, 6, 4,19,10,16, 5)$ |
| $ 5, 5, 5, 5 $ | $16$ | $5$ | $( 1,17,12,13, 7)( 2,18,11,14, 8)( 3,20,10,16, 5)( 4,19, 9,15, 6)$ |
| $ 20 $ | $16$ | $20$ | $( 1,19,11,15, 7, 4,18,10,14, 6, 2,20,12,16, 8, 3,17, 9,13, 5)$ |
| $ 20 $ | $16$ | $20$ | $( 1,19,12,16, 8, 3,17,10,14, 6, 2,20,11,15, 7, 4,18, 9,13, 5)$ |
Group invariants
| Order: | $320=2^{6} \cdot 5$ | |
| Cyclic: | No | |
| Abelian: | No | |
| Solvable: | Yes | |
| GAP id: | [320, 1584] |
| Character table: Data not available. |