Properties

Label 20T749
Order \(81920\)
n \(20\)
Cyclic No
Abelian No
Solvable Yes
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $749$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,20,17,16,13)(2,19,18,15,14)(3,12,10,8,5,4,11,9,7,6), (1,4,16,7,9)(2,3,15,8,10)(5,18,20,11,13)(6,17,19,12,14), (1,14,6,18,9)(2,13,5,17,10)(3,15,7,19,12,4,16,8,20,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
5:  $C_5$
10:  $C_{10}$
80:  $C_2^4 : C_5$ x 17
160:  $C_2 \times (C_2^4 : C_5)$ x 17
1280:  20T190
2560:  20T263, 2560T? x 2
5120:  5120T?
40960:  40960T?

Resolvents shown for degrees $\leq 23$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $C_5$

Degree 10: $C_2^4 : C_5$

Low degree siblings

20T749 x 127, 20T751 x 128

Siblings are shown with degree $\leq 23$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 332 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $81920=2^{14} \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  Yes
GAP id:  Data not available
Character table: Data not available.