Properties

Label 20T693
Order \(61440\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $693$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (3,15)(4,16)(5,12)(6,11)(7,14)(8,13)(9,19)(10,20)(17,18), (1,18,8,20,12)(2,17,7,19,11)(3,6,14,16,10,4,5,13,15,9)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
60:  $A_5$
120:  $A_5\times C_2$
960:  $C_2^4 : A_5$
1920:  $C_2 \wr A_5$, 20T220
3840:  12T255
30720:  30T1085

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: None

Degree 10: $A_{5}$

Low degree siblings

20T693 x 3, 40T18923 x 2, 40T18928 x 2, 40T18944 x 2, 40T18964 x 2, 40T19021 x 2, 40T19022 x 4, 40T19042 x 4, 40T19092 x 2, 40T19119 x 4, 40T19132 x 4, 40T19155 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 104 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $61440=2^{12} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.