Properties

Label 20T691
Order \(61440\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $691$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,3,2,4)(5,9,16,19,7,11,14,17,6,10,15,20,8,12,13,18), (1,9,4,12,2,10,3,11)(5,19,14,7,18,15)(6,20,13,8,17,16)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
120:  $S_5$
240:  $S_5\times C_2$
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$

Low degree siblings

20T682, 20T684, 20T687, 40T19061, 40T19062, 40T19065, 40T19066, 40T19069, 40T19070, 40T19073, 40T19074, 40T19142, 40T19176, 40T19189, 40T19191, 40T19193, 40T19205, 40T19206, 40T19207, 40T19208, 40T19215, 40T19218, 40T19219, 40T19220, 40T19221

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 69 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $61440=2^{12} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.