Properties

Label 20T685
Order \(61440\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $685$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,8,19,12,3,16,5,18,9)(2,13,7,20,11,4,15,6,17,10), (1,9,8,2,10,7)(3,11,5,4,12,6)(13,16,14,15)(17,19,18,20)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
60:  $A_5$
120:  $A_5\times C_2$ x 3
240:  20T64
960:  $C_2^4 : A_5$
1920:  $C_2 \wr A_5$ x 3
3840:  20T277
30720:  20T556

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $A_5$

Degree 10: $C_2 \wr A_5$

Low degree siblings

20T680, 40T19023, 40T19025, 40T19028 x 2, 40T19122 x 2, 40T19125, 40T19128, 40T19167, 40T19170 x 2, 40T19181 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 90 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $61440=2^{12} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.