Properties

Label 20T674
Order \(61440\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $674$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,8,2,13,7)(3,19,6)(4,20,5)(9,16,12)(10,15,11)(17,18), (1,2)(3,15,7,19,10,14,4,16,8,20,9,13)(5,18,12,6,17,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$
120:  $S_5$
1920:  $(C_2^4:A_5) : C_2$, 16T1329
3840:  12T257
30720:  30T1084

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: None

Degree 10: $S_5$

Low degree siblings

20T674, 20T676 x 2, 40T18929 x 2, 40T18932 x 2, 40T18947, 40T18948, 40T18954 x 2, 40T19049 x 2, 40T19054 x 2, 40T19055 x 2, 40T19088 x 2, 40T19089 x 2, 40T19090 x 2, 40T19100 x 2, 40T19109 x 2, 40T19110 x 2, 40T19115 x 2, 40T19116 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 74 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $61440=2^{12} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.