Properties

Label 20T673
Order \(61440\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $673$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,4,2,3)(5,7,6,8)(9,13,17,10,14,18)(11,16,19,12,15,20), (1,9,3,11,2,10,4,12)(5,6)(7,8)(17,19,18,20), (1,7,9,3,5,11,2,8,10,4,6,12)(13,14)(15,16)(17,20,18,19)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
120:  $S_5$
240:  $S_5\times C_2$
1920:  $(C_2^4:A_5) : C_2$
3840:  $C_2 \wr S_5$
30720:  20T568

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$

Low degree siblings

20T673, 40T19078 x 2, 40T19081 x 2, 40T19083 x 2, 40T19113 x 2, 40T19136, 40T19185 x 2, 40T19186 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 126 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $61440=2^{12} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.