Properties

Label 20T669
Order \(61440\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $669$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,12,15,18,5,4,10,14,19,7)(2,11,16,17,6,3,9,13,20,8), (1,19,8,14,2,20,7,13)(3,17,5,16,4,18,6,15)(9,10)(11,12)
$|\Aut(F/K)|$:  $4$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 3
4:  $C_2^2$
120:  $S_5$
240:  $S_5\times C_2$
1920:  $(C_2^4:A_5) : C_2$ x 3
3840:  $C_2 \wr S_5$ x 3
30720:  20T555

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 4: None

Degree 5: $S_5$

Degree 10: $(C_2^4:A_5) : C_2$, $C_2 \wr S_5$ x 2

Low degree siblings

20T664 x 6, 20T669 x 5, 40T18934 x 6, 40T19059 x 12, 40T19085 x 6, 40T19086 x 6, 40T19087 x 6, 40T19107 x 6, 40T19108 x 6, 40T19114 x 12, 40T19141 x 3, 40T19195 x 6, 40T19196 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 126 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $61440=2^{12} \cdot 3 \cdot 5$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.