Properties

Label 20T658
Order \(57600\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $658$
Parity:  $-1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,14,8,19)(2,13,7,20)(3,11,10,18)(4,12,9,17)(5,15)(6,16), (1,19,4,17,9,12,6,14,8,16)(2,20,3,18,10,11,5,13,7,15), (1,16,5,13,4,17,7,20,9,12,2,15,6,14,3,18,8,19,10,11)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
14400:  $(A_5^2 : C_2):C_2$
28800:  20T548

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 4: $D_{4}$

Degree 5: None

Degree 10: $(A_5^2 : C_2):C_2$

Low degree siblings

20T658 x 3, 24T16041 x 4, 40T18798 x 2, 40T18805 x 4, 40T18806 x 4, 40T18863 x 2, 40T18864 x 2

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 76 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $57600=2^{8} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.