Properties

Label 20T656
Order \(57600\)
n \(20\)
Cyclic No
Abelian No
Solvable No
Primitive No
$p$-group No

Related objects

Learn more about

Group action invariants

Degree $n$ :  $20$
Transitive number $t$ :  $656$
Parity:  $1$
Primitive:  No
Nilpotency class:  $-1$ (not nilpotent)
Generators:  (1,15,9,4,13,20,5,7,17,12)(2,16,10,3,14,19,6,8,18,11), (1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20), (1,11)(2,12)(3,13,16,9,8,17,19,5)(4,14,15,10,7,18,20,6)
$|\Aut(F/K)|$:  $2$

Low degree resolvents

|G/N|Galois groups for stem field(s)
2:  $C_2$ x 7
4:  $C_2^2$ x 7
8:  $D_{4}$ x 2, $C_2^3$
16:  $D_4\times C_2$
28800:  $S_5^2 \wr C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$

Degree 5: None

Degree 10: $S_5^2 \wr C_2$

Low degree siblings

20T655 x 2, 20T656, 24T16043 x 2, 24T16044 x 2, 40T18814 x 2, 40T18815 x 2, 40T18817 x 2, 40T18820 x 2, 40T18822 x 2, 40T18830 x 2, 40T18839, 40T18840

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy Classes

There are 70 conjugacy classes of elements. Data not shown.

Group invariants

Order:  $57600=2^{8} \cdot 3^{2} \cdot 5^{2}$
Cyclic:  No
Abelian:  No
Solvable:  No
GAP id:  Data not available
Character table: Data not available.